Abstract

Single Carrier Frequency Division Multiple Access (SC-FDMA) is being used successfully in the uplink communications of Long Term Evolution (LTE) standard. Owing to smaller envelope changes in SC-FDMA signal, it has a lower Peak to Average Power Ratio (PAPR) than Orthogonal Frequency Division Multiple Access (OFDMA) signal. But for higher order modulations, PAPR is still high and there is a requirement to mitigate PAPR in localised SC-FDMA systems. This paper discusses error function, exponential, rooting and logarithmic companding techniques that can be utilised to mitigate PAPR in SC-FDMA systems. Simulation results show that exponential companding technique provides better PAPR and Bit Error Rate (BER) performances at the cost of higher side lobes, and error function companding transform provides good PAPR and Power Spectral Density (PSD) performances at the cost of higher BER without increasing average signal power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.