Abstract
The notion of Gelfand pair (G, K) can be generalized by considering homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homogeneous vector bundles. Being a Gelfand pair is a necessary condition for being a commutative homogeneous vector bundle. In the case when G/K is a nilmanifold having square-integrable representations, a big family of commutative homogeneous vector bundles was determined in [Transform. Groups 24 (2019), no. 3, 887–911]. In this paper we complete that classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.