Abstract
A pair of non-empty subsets $(W,W')$ in an abelian group $G$ is a complement pair if $W+W'=G$. $W'$ is said to be minimal to $W$ if $W+(W'\setminus \{w'\}) \neq G, \forall \,w'\in W'$. In general, given an arbitrary subset in a group, the existence of minimal complement(s) depends on its structure. The dual problem asks that given such a set, if it is a minimal complement to some subset. We study tightness property of complement pairs $(W,W')$ such that both $W$ and $W'$ are minimal to each other. These are termed co-minimal pairs and we show that any non-empty finite set in an arbitrary free abelian group belongs to some co-minimal pair. We also construct infinite sets forming co-minimal pairs. Finally, we remark that a result of Kwon on the existence of minimal self-complements in $\mathbb{Z}$, also holds in any abelian group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.