Abstract
Information Retrieval (IR) methods have been recently employed to provide automatic support for bug localization tasks. However, for an IR-based bug localization tool to be useful, it has to achieve adequate retrieval accuracy. Lower precision and recall can leave developers with large amounts of incorrect information to wade through. To address this issue, in this paper, we systematically investigate the impact of combining various IR methods on the retrieval accuracy of bug localization engines. The main assumption is that different IR methods, targeting different dimensions of similarity between artifacts, can be used to enhance the confidence in each others' results. Five benchmark systems from different application domains are used to conduct our analysis. The results show that a) near-optimal global configurations can be determined for different combinations of IR methods, b) optimized IR-hybrids can significantly outperform individual methods as well as other unoptimized methods, and c) hybrid methods achieve their best performance when utilizing information-theoretic IR methods. Our findings can be used to enhance the practicality of IR-based bug localization tools and minimize the cognitive overload developers often face when locating bugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.