Abstract
A new, simple, and efficient approach for on-column surface-enhanced Raman scattering (SERS) detection in capillary electrophoresis (CE) is reported. A approximately 50-microm SERS substrate spot was prepared by laser-induced growth of silver particles in the 100-microm inner diameter CE capillary window or in a flow cell consisting of a 250-microm inner diameter fused silica capillary connector. For this purpose, the Raman laser was focused by a 20x objective into the detection window filled with a 0.5 mM silver nitrate and 10 mM citrate buffer solution. During the CE runs, the silver substrate spot was formed in a few seconds after the analyte injection, hence the analytes adsorbed sequentially to the silver surface when the detection window was reached, followed by desorption from the silver surface and continuing the electrophoretic migration to the capillary end. Thus, beyond migration time, valuable molecular specific information was delivered by the SERS spectra. Accurate separations and high-intensity SERS spectra are shown by CE-SERS time-dependent 3D electropherograms for the analytes rhodamine 6G, 4-(2-pyridylazo)resorcinol (PAR), PAR complex with Cu(II) and methylene blue at 0.25-25 ppm concentrations, by using 1.4-3.6 mW HeNe laser power and an acquisition time of 5 s for each spectrum. Before and after each analyte passes the detection window, clean background spectra were recorded and no memory effects perturbed the SERS detection. The silver substrate is characterized by a fast preparation rate, good reproducibility, a preparation success rate of over 95% and no mentionable influence on the electrophoretic migration time, the CE-SERS and CE-UV electropherograms being in good agreement. The successful coupling of CE and on-column SERS detection opens new perspectives for monitoring CE separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.