Abstract

We investigate the role of collective effects in the micromaser system as used in various studies of the physics of cavity electrodynamics. We focus our attention on the effect on large-time correlations due to multi-atom interactions. The influence of detection efficiencies and collective effects on the appearance of trapping states at low temperatures is also found to be of particular importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.