Abstract
We develop some techniques to study the adiabatic limiting behaviour of Calabi–Yau metrics on the total space of a fibration, and obtain strong control near the singular fibres by imposing restrictions on the singularity types. We prove a uniform lower bound on the metric up to the singular fibre, under fairly general hypotheses. Assuming a result in pluripotential theory, we prove a uniform fibre diameter bound for a Lefschetz K3 fibred Calabi–Yau $3$‑fold, which reduces the study of the collapsing metric to a locally non-collapsed situation, and we identify the Gromov–Hausdorff limit of the rescaled neighbourhood of the singular fibre.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.