Abstract

A variety of biochemical and physical processes participate in the creation and maintenance of collagen in biological tissue. Under mechanical stimuli these collagen fibers undergo continuous processes of morphoelastic change. The model presented here is motivated by experimental reports of stretch-stabilization of the collagen fibers to enzymatic degradation. The fiber structure is modeled in terms of a fiber density evolution that is regulated by means of a fixed creation rate and a mechano-sensitive dissolution rate. The theory accounts for the possibly different natural configurations of the fiber unit constituents and the ground substance matrix. It also generalizes previous theoretical descriptions so as to account for finite survival times of the individual fiber units. Special consideration is given to steady state fiber-remodeling processes in which fiber creation and dissolution are in balance. Fiber assembly processes that involve prestretching the fiber constituents yield a homeostatic stress response with a characteristic fiber tone. Fiber density returns to homeostasis after mechanical disruption when sufficient time has passed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.