Abstract

We classify coherent modules on k[x,y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit–Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.