Abstract

Previous studies have highlighted reversals in the Beaufort Gyre on regional scales during summer months, and more recently, throughout the annual cycle. In this study we investigate coherent ice drift features associated with individual ice beacons during winter 2008 that may be a signature of ice–coast interactions, atmospheric and/or oceanic forcing. Examined in particular are three case studies associated with reversals in ice beacon trajectories in January and April of 2008; case I corresponds to a meander reversal event in January, case II to a loop reversal event in April, and case III to a meander reversal event located to the northeast of the Mackenzie Canyon in April. An assessment of atmospheric and oceanic conditions during these reversal events shows enhanced ocean–sea-ice–atmosphere dynamical coupling during the Case I meander reversal event in January and comparatively weak coupling during the Case II loop and Case III meander reversal event in April. Absolute (single-particle/beacon) and relative (two-particle/beacon) dispersion results demonstrate dominant meridional ice drift displacement and inter-beacon separation for Case I relative to Cases II and III indicative of ice–ice and ice–coast interactions in January. The results from this investigation provide an ice drift case study analysis relevant to, and template for, high-resolution sea ice dynamic modeling studies essential for safety and hazard assessments of transportation routes and shipping lanes, ice forecasting, and nutrient and contaminant transport by sea ice in the Arctic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.