Abstract
Generalized power sums are linear combinations of ith powers of coordinates. We consider subalgebras of the polynomial algebra generated by generalized power sums, and study when such algebras are Cohen–Macaulay. It turns out that the Cohen–Macaulay property of such algebras is rare, and tends to be related to quantum integrability and representation theory of Cherednik algebras. Using representation theoretic results and deformation theory, we establish Cohen–Macaulayness of the algebra of q, t-deformed power sums defined by Sergeev and Veselov, and of some generalizations of this algebra, proving a conjecture of Brookner, Corwin, Etingof, and Sam. We also apply representation-theoretic techniques to studying m-quasi-invariants of deformed Calogero–Moser systems. In an appendix to this paper, M. Feigin uses representation theory of Cherednik algebras to compute Hilbert series for such quasi-invariants, and show that in the case of one light particle, the ring of quasi-invariants is Gorenstein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.