Abstract

Over the past few years several constructions of protograph codes have been proposed that are based on random lifts of suitably chosen base graphs. More recently, an algebraic analog of this approach was introduced using the theory of voltage graphs. The strength of the voltage graph framework is the ability to analyze the resulting derived graph algebraically, even when the voltages themselves are assigned randomly. Moreover, the theory of voltage graphs provides insight to designing lifts of graphs with particular properties. In this paper we illustrate how the properties of the derived graphs and the corresponding codes relate to the voltage assignments. In particular, we present a construction of LDPC codes by giving an algebraic method of choosing the permutation voltages and illustrate the usefulness of the proposed technique via simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.