Abstract

AbstractWe present a general setting to investigate 𝒰fin-cocycle superrigidity for Gaussian actions in terms of closable derivations on von Neumann algebras. In this setting we give new proofs to some 𝒰fin-cocycle superrigidity results of S. Popa and we produce new examples of this phenomenon. We also use a result of K. R. Parthasarathy and K. Schmidt to give a necessary cohomological condition on a group representation in order for the resulting Gaussian action to be 𝒰fin-cocycle superrigid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.