Abstract

Suppose G is a complex Lie group having a finite number of connected components and H is a closed complex subgroup of G with H° solvable. Let RG denote the radical of G. We show the existence of closed complex subgroups I and J of G containing H such that I/H is a connected solvmanifold with I° ⊃ RG, the space G/J has a Klein form SG/A, where A is an algebraic subgroup of the semisimple complex Lie group SG: = G/RG, and, unless I = J, the space J/I has Klein form , where is a Zariski dense discrete subgroup of some connected positive dimensional semisimple complex Lie group Ŝ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.