Abstract

The lay-up optimization problems of composite plates against buckling are studied. The plate has symmetric lay-up and is loaded by an in-plane loading. The Classical Lamination Plate Theory is used. The necessary optimality conditions for the plate orthotropy/anisotropy optimization problems are considered, with special attention to bending-twisting coupling. The purpose of the optimization is to maximize the (lowest) buckling eigen value. The varied lay-up/layer orientation angles are considered both as smooth functions of the location coordinates and as having the same values at every point. It is shown that the twisting moment (calculated in the principal curvature axes) plays an important role in the conditions. Two example problems for a thin composite plate, loaded by shear, are considered. The first one corresponds to the case of one shear loading direction. The details of some known numerical solutions are studied. The obtained numerical results are in agreement with the theoretical results. The maximal lowest eigen values are 2-folded ones. A schematic model for treatment of the known optimal numerical solution (60° unidirectional lay-up for a long plate loaded by shear) is proposed. The second example problem corresponds to the case of shear loading acting in two opposite directions. The ways of equalizing the lowest buckling values corresponding to both loading directions are proposed. Numerical results for various aspect ratio and plate thickness values are presented. The potential of weight saving is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.