Abstract

The latest advances in topological physics have yielded a toolset for highly robust wave-propagation modalities for overcoming obstacles involving beam steering and lateral diffraction in surface acoustic waves (SAWs). However, extant proposals are limited to the exploitation of spin- or valley-polarized phases and rely on nonzero Berry curvature effects. Here, we propose and experimentally demonstrate a highly robust guiding principle, which instead employs an intrinsic chirality of phase vortices and maintains a zero Berry curvature for SAWs. Based on a line defect within a true triangular phononic lattice, the guided SAW mode spans a wide bandwidth [(\ensuremath{\Delta}\ensuremath{\omega}/\ensuremath{\omega}${}_{\mathrm{center}}$) \ensuremath{\sim} 10%] and is well confined in the lateral direction with 3-dB attenuation within half of a unit cell. SAW routing around sharp bends with negligible backscatter is demonstrated. The on-chip integrated design permits unidirectional SAW modes that can enable considerable miniaturization of SAW-based devices, with applications ranging from radio-frequency devices to quantum information transduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call