Abstract

Bragg filters are of essential importance for chip-scale photonic systems. However, the implementation of filters with sub-nanometer bandwidth and rejection beyond 70 dB is hindered by the high index contrast of the silicon-on-insulator platform, which makes filters prone to fabrication imperfections. In this paper, we propose to combine coherency-broken cascading architecture and cladding modulation to circumvent the intrinsic limitation. The cascading architecture effectively prevents the accumulation of phase errors, while the cladding modulation offers additional design freedom to reduce the coupling coefficient. A bimodal Bragg filter with a testing-equipment-limited rejection level of 74 dB and a 40 dB bandwidth of 0.44 nm is experimentally demonstrated. The minimum feature size is 90 nm, which significantly relieves the fabrication constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call