Abstract

Free-space time domain THz spectroscopy accesses electrodynamic responses in a frequency regime ideally matched to interacting condensed matter systems. However, THz spectroscopy is challenging when samples are physically smaller than the diffraction limit of ∼0.5 mm, as is typical, for example, in van der Waals materials and heterostructures. Here, we present an on-chip, time-domain THz spectrometer based on semiconducting photoconductive switches with a bandwidth of 200 to 750 GHz. We measure the optical conductivity of a 7.5-μm wide NbN film across the superconducting transition, demonstrating spectroscopic signatures of the superconducting gap in a sample smaller than 2% of the Rayleigh diffraction limit. Our spectrometer features an interchangeable sample architecture, making it ideal for probing superconductivity, magnetism, and charge order in strongly correlated van der Waals materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call