Abstract

A class of "lab-on-a-chip" devices use external air pressure for pumping discrete drops in a microchannel network. External air connectors can be cumbersome and are real-estate intensive. We have developed an on-chip technique to generate pressures required for metering and pumping of nanoliter-volume discrete drops. This is achieved by heating of trapped air in a pressure-generating chamber. The pressure-generating chamber is connected to the point of pressure application in the liquid-conveying microchannel through an air-delivery channel. The trapped air volume on the order of 100 nL is heated by resistive metal heaters by tens of degrees celcius to generate air pressures on the order of 7.5 kN/m2. The rate of discrete drop pumping is electronically controlled in the microchannel device by controlling the rate of air heating. Flow rates on the order of 20 nL/s are obtained in the microchannel (300 microns x 30 microns) by heating the air chamber at the rate of approximately 6 degrees C/s. In this paper, we describe the design, fabrication, and operation of this new technique of generating on-chip air pressure, used for metering and pumping nanoliter discrete drops in microchannels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.