Abstract

The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications. In parallel, mode division multiplexing based on orbital angular momentum (OAM) shows promise in enhancing bandwidth utilization, thereby expanding the overall communication channel capacity. In this study, we present both theoretical and experimental demonstrations of an on-chip terahertz OAM demultiplexer. This device effectively couples and steers seven incident terahertz vortex beams into distinct high-quality focusing surface plasmonic beams, and the focusing directions can be arbitrarily designated. The proposed design strategy integrates space-to-chip mode conversion, OAM recognition, and on-chip routing in a compact space with subwavelength thickness, exhibiting versatility and superior performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.