Abstract

We report a novel on-chip Rayleigh imaging technique using wide-field laser illumination to measure optical scattering from individual single-walled carbon nanotubes (SWNTs) on a solid substrate with high spatial and spectral resolution. This method in conjunction with calibrated AFM measurements accurately measures the resonance energies and diameters for a large number of SWNTs in parallel. We apply this technique for fast mapping of key SWNT parameters, including the electronic-types and chiral indices for individual SWNTs, position and frequency of chirality-changing events, and intertube interactions in both bundled and distant SWNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call