Abstract

Nucleic acid testing is a common technique for medical diagnostics. For example, it is used to detect HIV treatment failure by monitoring viral load levels. Quadruplex Priming Amplification (QPA) is an isothermal nucleic acid amplification technique that requires little power and few chemical reagents per assay, all features that make QPA well suited for point-of-care (POC) diagnostics. The QPA assay can be further optimized by integrating it with microfluidic devices that can automate and combine multiple reaction steps and reduce the quantity and cost of reagents per test. In this study, a real-time, exponential QPA reaction is demonstrated for the first time in a microfluidic chip, where the reaction was not inhibited and supported performance levels comparable to a commercially-available, non-microfluidics setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.