Abstract
Performing medical diagnosis in microfluidic devices could scale down laboratory functions and reduce the cost for accessible healthcare. The ultimate goal of such devices is to receive a sample of blood, perform genetic amplification (polymerase chain reaction—PCR) and subsequently analyse the amplified products. DNA amplification is generally performed with DNA purified from blood, thus requiring on-chip implementation of DNA extraction steps with consequent increases in the complexity and cost of chip fabrication. Here, we demonstrate the use of unprocessed whole blood as a source of template for genomic or viral targets (human platelet antigen 1 (HPA1), fibroblast growth factor receptor 2 (FGFR2) and BK virus (BKV)) amplified by PCR on a three-layer microfluidic chip that uses a flexible membrane for pumping and valving. The method depends upon the use of a modified DNA polymerase (Phusion™). The volume of the whole blood used in microchip PCR chamber is 30 nl containing less than 1 ng of genomic DNA. For BKV on-chip whole blood PCR, about 3000 copies of BKV DNA were present in the chamber. The DNA detection method, laser-induced fluorescence, used in this article so far is not quantitative but rather qualitative providing a yes/no answer. The ability to perform clinical testing using whole blood, thereby eliminating the need for DNA extraction or sample preparation prior to PCR, will facilitate the development of microfluidic devices for inexpensive and faster clinical diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.