Abstract

AbstractMicrosupercapacitors (MSCs) with high energy densities offer viable miniaturized alternatives to bulky electrolytic capacitors if the former can respond at the kilo Hertz (kHz) or higher frequencies. Moreover, MSCs fabricated on a chip can be integrated into thin‐film electronics in a compatible manner, serving the function of ripple filtering units or harvesters of energy from high‐frequency sources. In this work, wafer‐scale fabrication is demonstrated of MXene microsupercapacitors with controlled flake sizes and engineered device designs to achieve excellent frequency filtering performance. Specifically, the devices (100 nm thick electrodes and 10 µm interspace) deliver high volumetric capacitance (30 F cm−3 at 120 Hz), high rate capability (300 V s−1), and a very short relaxation time constant (τ0 = 0.45 ms), surpassing conventional electrolytic capacitors (τ0 = 0.8 ms). As a result, the devices are capable of filtering 120 Hz ripples produced by AC line power at a frequency of 60 Hz. This study opens new avenues for exploring miniaturized MXene MSCs as replacements for bulky electrolytic capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.