Abstract

Carbon nanofibres (CNFs) and tungsten oxide (W18O49) nanowires have been incorporated into a continuous flow type microplasma reactor to increase the reactivity and efficiency of the barrier discharge at atmospheric pressure. CNFs and tungsten oxide nanowires were characterized by high-resolution scanning electron microscopy, transmission electron microscopy and nanodiffraction methods. Field emission of electrons from those nanostructures supplies free electrons and ions during microplasma production. Reduction in breakdown voltage, higher number of microdischarges and higher energy deposition were observed at the same applied voltage when compared with plane electrodes at atmospheric pressure in air. Rate coefficients of electron impact reaction channels to decompose CO2 were calculated and it was shown that CO2 consumption increased using CNFs compared with plane electrode in the microplasma reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.