Abstract
An integrated system was developed that performs microfluidic transport, mixing, and sensing on a single chip. The operation principle for the microfluidic transport was based on electrowetting. A solution to be transported was confined in a space between a row of gold working electrodes and a protruding poly(dimethylsiloxane) (PDMS) structure. When a negative potential was applied to one of the gold working electrodes, it became hydrophilic, and the solution was transported through the flow channel. The solution could be transported in any desired direction in a network of flow channels by switching on necessary electrodes one by one. Furthermore, two solutions transported through two flow channels could be mixed using a mixing electrode based on the same principle. To demonstrate the applicability of a lab-on-a-chip, an air gap ammonia electrode was integrated by taking advantage of the open structure of the flow channel. Gaseous ammonia that was produced after pH adjustment and diffused through an air gap caused a pH change in the electrolyte layer, which was measured with an iridium oxide pH indicator electrode. The 90% response time was less than 1 min for the millimolar order of ammonia. The calibration curve was linear down to 10 microM. The ammonia-sensing system was also applied to construct biosensing systems for urea and creatinine. A linear relationship was observed between the potential and the logarithm of the concentration of the analytes down to 50 microM for both urea and creatinine. The developed microfluidic system can be a basic building block for future systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.