Abstract

Manipulation and detection of magnetic beads on a semiconductor chip opens up new perspectives for analysis of magnetically labeled specimens in biomechanical micro-electromechanical systems for biological applications. Sensitive spin-valve sensors were integrated with magnetic field generating conductors to assess the behavior of ensembles of superparamagnetic nanoparticles 300 nm in diameter that contain 75%–80% magnetite. The spin-valve multilayer including a nanooxide layer achieves 8% magnetoresistance (MR) for an integrated device of 2×16 μm2. Motion of the magnetic particles towards and across the sensor is achieved by two tapered magnetic field generating current conductors. The spin-valve sensor detects the stray magnetic field that emanates from the ensemble of magnetic particles. We study the transients in the magnetic signal on the order of 1% MR. These results lead to a model that describes magnetization configurations of the cluster of beads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.