Abstract

We demonstrate the on-chip detection of light using photosensitive detectors based on quantum dot micropillar cavities. These microscale detectors are applied exemplarily to probe the emission of a monolithically integrated, electrically pumped whispering gallery mode microlaser. Light is detected via the photocurrent induced in the electrically contacted micropillar detectors under reverse-bias. In order to demonstrate the high potential and applicability of the microdetector presented, we determine the threshold current of an integrated microlaser to be (54 ± 4) μA, in very good agreement with the value of (53 ± 4) μA inferred from the optical data. Within this work, we realize the monolithic integration of a laser and a detector in a single device operating in the regime of cavity-quantum electrodynamics. Our results thus advance the research on microscale sensor technology towards the few-photon quantum limit and pave the way for on-chip opto-electronic feedback experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.