Abstract

Nonlinear microresonators can convert light from chip-integrated sources into new wavelengths within the visible and near-infrared spectrum. For most applications, such as the interrogation of quantum systems with specific transition wavelengths, tuning the frequency of converted light is critical. Nonetheless, demonstrations of wavelength conversion have mostly overlooked this metric. Here, we apply efficient integrated heaters to tune the idler frequency produced by the Kerr optical parametric oscillation in a silicon nitride microring across a continuous 1.5 terahertz range. Finally, we suppress idler frequency noise between DC and 5 kHz by several orders of magnitude using feedback to the heater drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.