Abstract

ZnO nanorods were selectively grown on-chip with a two-step low-temperature hydrothermal method and their gas sensing properties were investigated. Small zinc islands were deposited by sputtering on a glass substrate and used as nucleation sites for the ZnO nanorod growth. An equimolar aqueous solution of 0.005M Zn(NO3)2·6H2O and (CH2)6N4 at 85°C was used in two steps. The first step was used for nucleation and growth of short ZnO nanorods for 4h, whereas the second step was used for elongation of the nanorods for 36h. Long porous nanorods from neighboring islands connected to each other and formed nanorod junctions. A gas sensor with such nanorods was evaluated towards NO2, ethanol, hydrogen, and ammonia to characterize its sensing properties. It showed that the gas sensor has the highest sensitivity to NO2, and a very high selectivity to this gas when measured at 450°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.