Abstract

An acoustic microfluidic system for miniaturized fluorescence-activated cell sorting (microFACS) is presented. By excitation of a miniaturized piezoelectric transducer at 10 MHz in the microfluidic channel bottom, an acoustic standing wave is formed in the channel. The acoustic radiation force acting on a density interface causes fluidic movement, and the particles or cells on either side of the fluid interface are displaced in a direction perpendicular to the standing wave direction. The small size of the transducer enables individual manipulation of cells passing the transducer surface. At constant transducer activation the system was shown to accomplish up to 700 microm sideways displacement of 10 microm beads in a 1 mm wide channel. This is much larger than if utilizing the acoustic radiation force acting directly on particles, where the limitation in maximum displacement is between a node and an antinode which at 10 MHz is 35 microm. In the automatic sorting setup, the system was demonstrated to successfully sort single cells of E-GFP expressing beta-cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.