Abstract
We present a concept for the post production modification of commercially available microfluidic devices to incorporate local temperature control, thus allowing for the exact alignment of heating structures with the existing features, e.g. wells, channels or valves, of a system. Specifically, we demonstrate the application of programmable local heating, controlled by computerized PI regulation, to a rapid solution exchanger. Characterisation of the system to show that both uniform temperature distributions and temperature gradients can be established, and to confirm that the solution exchange properties are undisturbed by heating, was achieved using in situ thermometry and amperometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.