Abstract

Terahertz spectroscopy is a promising tool for analyzing the picosecond dynamics of biomolecules, which is influenced by surrounding water molecules. However, water causes extreme losses to terahertz signals, preventing sensitive measurements at this frequency range. Here, we present sensitive on-chip terahertz spectroscopy of highly lossy aqueous solutions using a vector network analyzer, contact probes, and a coplanar waveguide with a 0.1 mm wide microfluidic channel. The complex permittivities of various deionized water/isopropyl alcohol concentration are extracted from a known reference measurement across the frequency range 750-1100 GHz and agrees well with literature data. The results prove the presented method as a high-sensitive approach for on-chip terahertz spectroscopy of high-loss liquids, capable of resolving the permittivity of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.