Abstract
Optical phased arrays (OPAs) are important as they allow beam steering and scanning with no moving parts. As their channel count increases, the complexity of control and calibration becomes challenging. We propose an architecture and algorithm that provide rapid on-chip calibration and are scalable to arbitrary channel counts with significantly reduced chip area and reduced overall complexity compared to previously proposed approaches. The optimized phase shifter tuning algorithm - Deterministic Stochastic Gradient Descent (DSGD) - rapidly converges to the optimal state speeding up the digital-to-analog converter based control of large channel count OPAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.