Abstract

In this note we give a proof of Cherednik’s generalization of Macdonald–Mehta identities for the root system A n − 1 A_{n-1} , using representation theory of quantum groups. These identities give an explicit formula for the integral of a product of Macdonald polynomials with respect to a “difference analogue of the Gaussian measure”. They were suggested by Cherednik, who also gave a proof based on representation theory of affine Hecke algberas; our proof gives a nice interpretation for these identities in terms of representations of quantum groups and seems to be simpler than that of Cherednik.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.