Abstract

Non-metallic inclusions offer one of the most effective routes for improving the machinability of steels. However, the wear-reducing mechanisms activated by such inclusions are not fully understood. The interactions are notoriously difficult to predict due to the wide variety of steel grades, cutting conditions, and tool materials employed in industry. The interaction between PVD (Ti,Al)N coated cemented carbide tools, non-metallic inclusions, atmospheric oxygen, and the stainless steel 316L in a turning operation is therefore investigated here as a case study. The study includes turning experiments, nanometer resolution microscopy, and thermodynamic calculations. The paper explains how not only too high a contact pressures hinder the formation of protective deposits at the tool edge, but also how too low a contact pressure leads to excessive wear. A range of conditions specified in this paper must therefore be met for the two observed protective non-metallic inclusions Mg1Al2O4 and Al2Ca2Si1O7 to be preferentially deposited on a tool. Hence the coating wear is experimentally investigated, explained, and a thermodynamic calculation method for predicting the protective or degenerative potential of a deposit on the coating is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.