Abstract

A number of new huge neutrino telescopes have been built, are being built, and are planned to be built all over the world. With these setups, cosmic neutrinos of high energies can be studied experimentally. Atmospheric neutrinos represent the main backgrounds to such experiments—namely, the atmospheric neutrinos determine how large a setup should be to measure diffuse cosmic neutrino fluxes or what angular resolution of a setup should be in order that searches for pointlike neutrino sources in the sky be successful. The atmospheric-neutrino fluxes are calculated in the present study. At high energies, the atmospheric-neutrino fluxes consist mostly of neutrinos produced in the atmosphere through charmed-particle decays. Three sources of information about charm production are used: (1) data obtained in accelerator experiments, (2) data on cosmicray muons, and (3) predictions of the NLO and QGSM QCD models for the charm-production at energies not available at modern accelerators. The uncertainties in the calculated fluxes of atmospheric neutrinos from charmed-particle decays are estimated to be at a level of 3–5 orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call