Abstract
According to the gravitationally-modified Maxwell equations that were proposed for an alternative scalar theory with an ether , electric charge would not be conserved in a time-dependent gravitational field. We define an asymptotic expansion scheme for the electromagnetic field in a weak gravitational field. This allows us to assess the amounts of charge production or destruction which are thus predicted. These amounts seem high enough to discard that version of the gravitationally-modified Maxwell equations. We show that this failure is due to the former assumption of additivity of the energy tensors: an interaction energy tensor has to be added. Then the standard Maxwell equations in a curved spacetime become compatible with that scalar theory, and they predict charge conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.