Abstract
We evaluate averages involving characteristic polynomials, inverse characteristic polynomials and ratios of characteristic polynomials for a random matrix taken from a L-deformed chiral Gaussian Unitary Ensemble with an external source Ω. Relation to a recently studied statistics of bi-orthogonal eigenvectors in the complex Ginibre ensemble, see Fyodorov (2017 arXiv:1710.04699), is briefly discussed as a motivation to study asymptotics of these objects in the case of external source proportional to the identity matrix. In particular, for an associated complex bulk/chiral edge scaling regime we retrieve the kernel related to Bessel/Macdonald functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.