Abstract

In this paper, by considering the Caputo-like delta difference definition, a fractional difference order map with chaotic dynamics and with no equilibria is proposed. The complex dynamical behaviors associated with fractional difference order maps are analyzed employing the phase portraits, bifurcations diagrams, and Lyapunov exponents. The complexity of the sequence generated by the chaotic difference map is studied using the permutation entropy approach. Afterwards, projective synchronization of the systems is investigated. Fuzzy logic engines as intelligent schemes are strong tools for control of various systems. However, studies that apply fuzzy logic engines for control of fractional-order discrete-time systems are rare. Hence, in the current study, by taking advantages of fuzzy systems, a new controller is proposed for the fractional-order discrete-time map. The fuzzy logic engine is implemented in order to enhance the performance and agility of the proposed control technique. The stability of the closed-loop systems and asymptotic convergence of the projective synchronization error based on the proposed control scheme are proven. Finally, numerical simulations which clearly confirm that the offered control technique is able to push the states of the fractional-order discrete-time system to the desired value in a short period of time are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.