Abstract

In (2), Hall considered the question: for what varieties of soluble groups do all finitely generated groups satisfy max-n (the maximal condition for normal subgroups)? He has shown that the variety M of metabelian groups and more generally the variety of Abelian-by-nilpotent-of-class-c (c ≥ 1) groups has this property; whereas on the contrary, there are finitely generated groups in the variety V of centre-by-metabelian groups (i.e. defined by the law [x, y; u, v; z]) which do not satisfy max-n. One naturally raises the question: for what subvarieties of V do all finitely generated groups satisfy max-n?

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.