Abstract
Let ω be a weight in the sense of Braun, Meise, Taylor, which defines a non-quasianalytic class. Let H be a compact subset of ℝn. It is proved that for every function ƒ on ℝn which belongs to the non-quasianalytic (ω)-class, there is an element g of the same class which is analytic on ℝn\H and such that Dαƒ(x) = Dαg(x) for every x ∈ H and α ∈ ℕ0n. A similar result is proved for functions of the Roumieu type. Continuous linear extension operators of Whitney jets with additional properties are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.