Abstract
The class CR of completely regular semigroups considered as algebras with binary multiplication and unary operation of inversion forms a variety. Kernel, trace, local and core relations, denoted by K, T, L and C, respectively, are quite useful in studying the structure of the lattice L(CR) of subvarieties of CR. They are equivalence relations whose classes are intervals. Their ends are used for defining operators on L(CR). Starting with a few band varieties, we repeatedly apply operators induced by upper ends of classes of these relations and characterize corresponding classes up to certain variety low in the lattice L(CR). We consider only varieties whose origin are “central” band varieties, that is those in the middle column of the lattice L(B) of band varieties. Several diagrams represent the (semi)lattices studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.