Abstract

In this paper the following theorem is proved regarding groups of finite Morley rank which are perfect central extensions of quasisimple algebraic groups.Theorem 1. Let G be a perfect group of finite Morley rank and let C0be a definable central subgroup of G such that G/C0 is a universal linear algebraic group over an algebraically closed field; that is G is a perfect central extension of finite Morley rank of a universal linear algebraic group. Then C0 = 1.Contrary to an impression which exists in some circles, the center of the universal extension of a simple algebraic group, as an abstract group, is not finite in general. Thus the finite Morley rank assumption cannot be omitted.Corollary 1. Let G be a perfect group of finite Morley rank such that G/Z(G) is a quasisimple algebraic group. Then G is an algebraic group. In particular, Z(G) is finite([4], Section 27.5).An understanding of central extensions of quasisimple linear algebraic groups which are groups of finite Morley rank is necessary for the classification of tame simple K*-groups of finite Morley rank, which constitutes an approach to the Cherlin-Zil’ber conjecture. For this reason the theorem above and its corollary were proven in [1] (Theorems 4.1 and 4.2) under the assumption of tameness, which simplifies the argument considerably. The result of the present paper shows that this assumption can be dropped. The main line of argument is parallel to that in [1]; the absence of the tameness assumption will be countered by a model-theoretic result and results from K-theory. The model-theoretic result places limitations on definability in stable fields, and may possibly be relevant to eliminating certain other uses of tameness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call