Abstract

Abstract In this paper, we concern about a modified version of the Keller-Segel model. The Keller-Segel is a system of partial differential equations used for modeling Chemotaxis in which chemical substances impact the movement of mobile species. For considering memory effects on the model, we replace the classical derivative with respect to time variable by the time-fractional derivative in the sense of Caputo. From this modification, we focus on the well-posedness of the Cauchy problem associated with such the model. Precisely, when the spatial variable is considered in the space R d {{\mathbb{R}}}^{d} , a global solution is obtained in a critical homogeneous Besov space with the assumption that the initial datum is sufficiently small. For the bounded domain case, by using a discrete spectrum of the Neumann Laplace operator, we provide the existence and uniqueness of a mild solution in Hilbert scale spaces. Moreover, the blowup behavior is also studied. To overcome the challenges of the problem and obtain all the aforementioned results, we use the Banach fixed point theorem, some special functions like the Mainardi function and the Mittag-Leffler function, as well as their properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.