Abstract
Euclidean Clifford analysis is a higher dimensional function theory, refining harmonic analysis, centred around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator, called the Dirac operator. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions of two Hermitean Dirac operators, invariant under the action of the unitary group. In this paper, a Cauchy integral formula is established by means of a matrix approach, allowing the recovering of the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables as a special case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Brazilian Mathematical Society, New Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.