Abstract
We study the problem of stationarity and ergodicity for autoregressive multinomial logistic time series models which possibly include a latent process and are defined by a GARCH-type recursive equation. We improve considerably upon the existing conditions about stationarity and ergodicity of those models. Proofs are based on theory developed for chains with complete connections. A useful coupling technique is employed for studying ergodicity of infinite order finite-state stochastic processes which generalize finite-state Markov chains. Furthermore, for the case of finite order Markov chains, we discuss ergodicity properties of a model which includes strongly exogenous but not necessarily bounded covariates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.