Abstract

Recently, there have been growing concerns about electric power grid security and resilience. The performance of the power grid may suffer from component failures or targeted attacks. A sophisticated adversary may target critical components in the grid, leading to cascading failures and large blackouts. To this end, this paper begins with identifying the most critical components that lead to cascading failures in the grid and then presents a defensive mechanism using energy storage to defend against cascading failures. Based on the optimal power flow control on the standard IEEE power system test cases, we systematically assess component significance, simulate attacks against power grid components, and evaluate the consequences. We also conduct extensive simulations to investigate the effectiveness of deploying Energy Storage Systems (ESSs), in terms of storage capacity and deployment locations, to mitigate cascading failures. Through extensive simulations, our data shows that integrating energy storage systems into the smart grid can efficiently mitigate cascading failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.