Abstract

In this paper, we considered the set DX, consisting of all binary relations α ⊆ X × X satisfying (∀x,y,u,v ∈ X) (x,u),(x,v),(y,u)∈α ⇒(y,v) ∈ α. This set is an inverse semigroup under a binary operation defined by xα = yβ−1 ≠ ∅, where xα denotes the set of images of x under α, and yβ−1 denotes the set of pre-images of y under β. Combinatorial results relating to Green’s relations in semigroup are obtained. In particular, we obtained cardinalities of Green’s equivalence classes in the semigroup for the case where X is finite. Also, we obtained the number of idempotent elements in to be equal to , where n = |X| and B(k) is the Bell number defined as the number of partitions of a set of k elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.