Abstract

Commutative algebras of Toeplitz operators acting on the Bergman space on the unit disk have been completely classified in terms of geometric properties of the symbol class. The question when two Toeplitz operators acting on the harmonic Bergman space commute is still open. In some papers, conditions on the symbols have been given in order to have commutativity of two Toeplitz operators. In this paper, we describe three different algebras of Toeplitz operators acting on the harmonic Bergman space: The C*-algebra generated by Toeplitz operators with radial symbols, in the elliptic case; the C*-algebra generated by Toeplitz operators with piecewise continuous symbols, in the parabolic and hyperbolic cases. We prove that the Calkin algebra of the first two algebras are commutative, like in the case of the Bergman space, while the last one is not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.